Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials.
نویسندگان
چکیده
For the purpose of obtaining high bone forming efficacy, development of chitosan was attempted as a tool useful as a scaffolding device. Porous chitosan matrices, chitosan-poly(L-lactide) (PLLA) composite matrices and chitosan coated on PLLA matrices were dealt with in this research. Porous chitosan matrix was fabricated by freeze-drying and cross-linking aqueous chitosan solution. Porous chitosan matrix combined with ceramics and constituents of extracellular matrices were prepared and examined for their bone regenerative potential. Composite porous matrix of chitosan-PLLA was prepared by mixing polylactide with chitosan and freeze-drying. All chitosan based devices demonstrated improved bone forming capacity by increasing mechanical stability and biocompatibility. Release of platelet-derived growth factor-BB (PDGF-BB) from these matrices exerted significant osteoinductive effect in addition to the high osteoconducting capacity of the porous chitosan matrices. The hydrophobic surface of PLLA matrices was modified by chitosan to enhance cell affinity and wettability. The chitosan coated PLLA matrix induced increased osteoblast attachment as compared with intact PLLA surface. Overall results in this study demonstrated the usefulness of chitosan as drug releasing scaffolds and as modification tools for currently used biomaterials to enhance tissue regeneration efficacy. These results may expand the feasibility of combinative strategy of controlled local drug delivery concept and tissue engineered bone formation in reconstructive therapy in the field of periodontics, orthopedics and plastic surgery.
منابع مشابه
Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration.
With an aim of improving bone regeneration, chitosan sponge containing platelet-derived growth factor-BB (PDGF-BB) were developed. For fabrication of chitosan sponge, chitosan solution was freeze-dried, crosslinked and freeze-dried again. PDGF-BB was incorporated into the chitosan sponge by soaking chitosan sponge into the PDGF-BB solution. Release kinetics of PDGF-BB, cell attachment, prolifer...
متن کاملIncorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering.
The aim of this study was to develop a 3-D construct carrying an inherent sequential growth factor delivery system. Poly(lactic acid-co-glycolic acid) (PLGA) nanocapsules loaded with bone morphogenetic protein BMP-2 and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) nanocapsules loaded with BMP-7 made the early release of BMP-2 and longer term release of BMP-7 possible. 3-D fiber mesh scaf...
متن کاملSynthesis of Thiolated Chitosans: Promising Polymers for Prolonged Mucoadhesive Drug Delivery
The successful development of multifunctional drug delivery systems is mainly based on the development and evaluation of new mucoadhesive polymers. Chitosan is a natural polycationic copolymer consisting of glucosamine and Nacetylglucosamine units. The polymer has valuable properties as a biomaterial because it is considered to be biocompatible, biodegradable and non-toxic. The derivatization o...
متن کاملChitosan-Based Biomaterials for Tissue Repair and Regeneration
Tissue repair and regeneration is an interdisciplinary field focusing on development of biological and bioactive substitutes. Chitosan is a natural polysaccharide exhibiting excellent biocompatibility, biodegradability, affinity to biomolecules, and wound-healing activity. It can also be easily modified via chemical and physical reactions to obtain derivatives of various structures, properties,...
متن کاملCovalently conjugated transforming growth factor-β1 in modular chitosan hydrogels for the effective treatment of articular cartilage defects.
Approaches to control precisely growth factor presentation to a tissue defect in a sustained fashion are of increasing interest for a number of complex tissue engineering applications. Although transforming growth factor beta-1 (TGF-β1) plays a key role in promoting chondrogenesis, the therapeutic use of TGF-β1 is limited by its inherent protein instability, requiring high amounts of the protei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of controlled release : official journal of the Controlled Release Society
دوره 78 1-3 شماره
صفحات -
تاریخ انتشار 2002